One problem of data-driven answer extraction in open-domain factoid question answering is that the class distribution of labeled training data is fairly imbalanced. This imbalance has a deteriorating effect on the performance of resulting classifiers. In this paper, we propose a method to tackle class imbalance by applying some form of cost-sensitive learning which is preferable to sampling. We present a simple but effective way of estimating the misclassification costs on the basis of the class distribution. This approach offers three benefits. Firstly, it maintains the distribution of the classes of the labeled training data. Secondly, this form of meta-learning can be applied to a wide range of common learning algorithms. Thirdly, this approach can be easily implemented with the help of state-of-the-art machine learning software.
Michael Wiegand, Jochen L. Leidner, Dietrich Klako