We show that an important and computationally challenging solution space feature of the graph coloring problem (COL), namely the number of clusters of solutions, can be accurately estimated by a technique very similar to one for counting the number of solutions. This cluster counting approach can be naturally written in terms of a new factor graph derived from the factor graph representing the COL instance. Using a variant of the Belief Propagation inference framework, we can efficiently approximate cluster counts in random COL problems over a large range of graph densities. We illustrate the algorithm on instances with up to 100, 000 vertices. Moreover, we supply a methodology for computing the number of clusters exactly using advanced techniques from the knowledge compilation literature. This methodology scales up to several hundred variables.