We study a novel "coverage by directional sensors" problem with tunable orientations on a set of discrete targets. We propose a Maximum Coverage with Minimum Sensors (MCMS) problem in which coverage in terms of the number of targets to be covered is maximized whereas the number of sensors to be activated is minimized. We present its exact Integer Linear Programming (ILP) formulation and an approximate (but computationally efficient) centralized greedy algorithm (CGA) solution. These centralized solutions are used as baselines for comparison. Then we provide a distributed greedy algorithm (DGA) solution. By incorporating a measure of the sensors residual energy into DGA, we further develop a Sensing Neighborhood Cooperative Sleeping (SNCS) protocol which performs adaptive scheduling on a larger time scale. Finally, we evaluate the properties of the proposed solutions and protocols in terms of providing coverage and maximizing network lifetime through extensive simulations. Mor...
Jing Ai, Alhussein A. Abouzeid