Sciweavers

ALGORITHMICA
2010

On Covering Problems of Rado

13 years 11 months ago
On Covering Problems of Rado
T. Rado conjectured in 1928 that if S is a finite set of axis-parallel squares in the plane, then there exists an independent subset I S of pairwise disjoint squares, such that I covers at least 1/4 of the area covered by S. He also showed that the greedy algorithm (repeatedly choose the largest square disjoint from those previously selected) finds an independent set of area at least 1/9 of the area covered by S. The analogous question for other shapes and many similar problems have been considered by R. Rado in his three papers (1949, 1951 and 1968) on this subject. After 45 years (in 1973), Ajtai came up with a surprising example disproving T. Rado's conjecture. We revisit Rado's problem and present improved upper and lower bounds for squares, disks, convex sets, centrally symmetric convex sets, and others, as well as algorithmic solutions to these variants of the problem.
Sergey Bereg, Adrian Dumitrescu, Minghui Jiang
Added 08 Dec 2010
Updated 08 Dec 2010
Type Journal
Year 2010
Where ALGORITHMICA
Authors Sergey Bereg, Adrian Dumitrescu, Minghui Jiang
Comments (0)