This paper concerns the use of real-valued functions for binary classification problems. Previous work in this area has concentrated on using as an error estimate the `resubstitution' error (that is, the empirical error of a classifier on the training sample) or its derivatives. However, in practice, cross-validation and related techniques are more popular. Here, we devise new holdout and cross-validation estimators for the case where real-valued functions are used as classifiers, and we analyse theoretically the accuracy of these. Contents
Martin Anthony, Sean B. Holden