Abstract--This paper presents the development of an unsupervised image segmentation framework (referred to as CTex) that is based on the adaptive inclusion of color and texture in the process of data partition. An important contribution of this work consists of a new formulation for the extraction of color features that evaluates the input image in a multispace color representation. To achieve this, we have used the opponent characteristics of the RGB and YIQ color spaces where the key component was the inclusion of the Self Organizing Map (SOM) network in the computation of the dominant colors and estimation of the optimal number of clusters in the image. The texture features are computed using a multichannel texture decomposition scheme based on Gabor filtering. The major contribution of this work resides in the adaptive integration of the color and texture features in a compound mathematical descriptor with the aim of identifying the homogenous regions in the image. This integration...
Dana Elena Ilea, Paul F. Whelan