Proof search has been used to specify a wide range of computation systems. In order to build a framework for reasoning about such specifications, we make use of a sequent calculus involving induction and co-induction. These proof principles are based on a proof theoretic (rather than set-theoretic) notion of definition [18, 10, 46, 24]. Definitions are akin to logic programs, where the left and right rules for defined atoms allow one to view theories as "closed" or defining fixed points. The use of definitions and free equality makes it possible to reason intentionally about syntax. We add in a consistent way rules for pre and post fixed points, thus allowing the user to reason inductively and co-inductively about properties of computational system ull use of higher-order abstract syntax. Consistency is guaranteed via cut-elimination, where we give the first, to our knowledge, cut-elimination procedure in the presence of general inductive and co-inductive definitions. s: log...