Sciweavers

NN
2002
Springer

Data visualisation and manifold mapping using the ViSOM

13 years 11 months ago
Data visualisation and manifold mapping using the ViSOM
The self-organising map (SOM) has been successfully employed as a nonparametric method for dimensionality reduction and data visualisation. However, for visualisation the SOM requires a colouring scheme to imprint the distances between neurons so that the clustering and boundaries can be seen. Even though the distributions of the data and structures of the clusters are not faithfully portrayed on the map. Recently an extended SOM, called the visualisation-induced SOM (ViSOM) has been proposed to directly preserve the distance information on the map, along with the topology. The ViSOM constrains the lateral contraction forces between neurons and hence regularises the interneuron distances so that distances between neurons in the data space are in proportion to those in the map space. This paper shows that it produces a smooth and graded mesh in the data space and captures the nonlinear manifold of the data. The relationships between the ViSOM and the principal curve/surface are analyse...
Hujun Yin
Added 22 Dec 2010
Updated 22 Dec 2010
Type Journal
Year 2002
Where NN
Authors Hujun Yin
Comments (0)