This paper describes a new language resource of events and semantic roles that characterize real-world situations. Narrative schemas contain sets of related events (edit and publish), a temporal ordering of the events (edit before publish), and the semantic roles of the participants (authors publish books). This type of world knowledge was central to early research in natural language understanding. Scripts were one of the main formalisms, representing common sequences of events that occur in the world. Unfortunately, most of this knowledge was hand-coded and time consuming to create. Current machine learning techniques, as well as a new approach to learning through coreference chains, has allowed us to automatically extract rich event structure from open domain text in the form of narrative schemas. The narrative schema resource described in this paper contains approximately 5000 unique events combined into schemas of varying sizes. We describe the resource, how it is learned, and a ...