Dublin City University (DCU) and University of Tampere (UTA) participated in the ImageCLEF 2007 photographic ad-hoc retrieval task with several monolingual and bilingual runs. Our approach was language independent: text retrieval based on fuzzy s-gram query translation was combined with visual retrieval. Data fusion between text and image content was performed using unsupervised query-time weight generation approaches. Our baseline was a combination of dictionary-based query translation and visual retrieval, which achieved the best result. The best mixed modality runs using fuzzy s-gram translation achieved on average around 83% of the performance of the baseline. Performance was more similar when only top rank precision levels of P10 and P20 were considered. This suggests that fuzzy sgram query translation combined with visual retrieval is a cheap alternative for cross-lingual image retrieval where only a small number of relevant items are required. Both sets of results emphasize the...