In this paper, the problem of decentralized adaptive output-feedback stabilization is investigated for large-scale stochastic nonlinear systems with three types of uncertainties, including parametric uncertainties, nonlinear uncertain interactions and stochastic inverse dynamics. Under the assumption that the inverse dynamics of the subsystems are stochastic input-to-state stable, an adaptive output-feedback controller is constructively designed by the backstepping method. It is shown that under some general conditions, the closed-loop system trajectories are bounded in probability and the outputs can be regulated into a small neighborhood of the origin in probability. In addition, the equilibrium of interest is globally stable in probability and the outputs can be regulated to the origin almost surely when the drift and diffusion vector fields vanish at the origin. The contributions of the work are characterized by the following novel features: (1) even for centralized singleinput s...