Sciweavers

ICANN
2010
Springer

Deep Bottleneck Classifiers in Supervised Dimension Reduction

13 years 11 months ago
Deep Bottleneck Classifiers in Supervised Dimension Reduction
Deep autoencoder networks have successfully been applied in unsupervised dimension reduction. The autoencoder has a "bottleneck" middle layer of only a few hidden units, which gives a low dimensional representation for the data when the full network is trained to minimize reconstruction error. We propose using a deep bottlenecked neural network in supervised dimension reduction. Instead of trying to reproduce the data, the network is trained to perform classification. Pretraining with restricted Boltzmann machines is combined with supervised finetuning. Finetuning with supervised cost functions has been done, but with cost functions that scale quadratically. Training a bottleneck classifier scales linearly, but still gives results comparable to or sometimes better than two earlier supervised methods.
Elina Parviainen
Added 07 Dec 2010
Updated 07 Dec 2010
Type Conference
Year 2010
Where ICANN
Authors Elina Parviainen
Comments (0)