Sciweavers

MM
2009
ACM

Deep exploration for experiential image retrieval

14 years 7 months ago
Deep exploration for experiential image retrieval
Experiential image retrieval systems aim to provide the user with a natural and intuitive search experience. The goal is to empower the user to navigate large collections based on his own needs and preferences, while simultaneously providing him with an accurate sense of what the database has to offer. In this paper we integrate a new browsing mechanism called deep exploration with the proven technique of retrieval by relevance feedback. In our approach, relevance feedback focuses the search on relevant regions, while deep exploration facilitates transparent navigation to promising regions of feature space that would normally remain unreachable. Optimal feature weights are determined automatically based on the evidential support for the relevance of each single feature. To achieve efficient refinement of the search space, images are ranked and presented to the user based on their likelihood of being useful for further exploration. Categories and Subject Descriptors H.3.3 [Information ...
Bart Thomee, Mark J. Huiskes, Erwin M. Bakker, Mic
Added 28 May 2010
Updated 28 May 2010
Type Conference
Year 2009
Where MM
Authors Bart Thomee, Mark J. Huiskes, Erwin M. Bakker, Michael S. Lew
Comments (0)