Statistical analysis of anatomical shape differences between two different populations can be reduced to a classification problem, i.e., learning a classifier function for assigning new examples to one of the two groups while making as few mistakes as possible. In this framework, feature vectors representing the shape of the organ are extracted from the input images and are passed to the learning algorithm. The resulting classifier then has to be interpreted in terms of shape differences between the two groups back in the image domain. We propose and demonstrate a general approach for such interpretation using deformations of outline meshes to represent shape differences. Given a classifier function in the feature space, we derive a deformation that corresponds to the differences between the two classes while ignoring shape variability within each class. The algorithm essentially estimates the gradient of the classification function with respect to node displacements in the outline mes...
Polina Golland, W. Eric L. Grimson, Martha Elizabe