Generalized cylinder (GC) has played an important role in computer vision since it was introduced in the 1970s. While studying GC models in human visual perception of shapes from contours, Marr assumed that GC's limbs are planar curves. Later, Koenderink and Ponce pointed out that this assumption does not hold in general by giving some examples. In this paper, we show that straight homogeneous generalized cylinders (SHGCs) and tori (a kind of curved GCs) have planar limbs when viewed from points on specific straight lines. This property leads us to the definition and investigation of a new class of GCs, with the help of the surface model proposed by Degen for geometric modeling. We call them Degen generalized cylinders (DGCs), which include SHGCs, tori, quadrics, cyclides, and more other GCs into one model. Our rigorous discussion is based on projective geometry and homogeneous coordinates. We present some invariant properties of DGCs that reveal the relations among the planar lim...