We present the concept of volumetric depth-peeling. The proposed method is conceived to render interior and exterior iso-surfaces for a fixed iso-value and to blend them without the need to render the volume multiple times. The main advantage of our method over pre-integrated volume rendering is the ability to extract arbitrarily many iso-layers for the given iso-value. Up to now, pre-integrated volume rendering is only capable of visualizing the nearest two (front and back-faced) iso-surfaces. A further gain of our algorithm is the rendering speed, since it does not depend on the number of layers to be extracted, as for previous depth-peeling methods. We rather exploit the natural slicing order of 3D texturing to circumvent the handicap of storing intermediate layers in textures, as done in polygonalbased depth-peeling approaches. We are further capable of rapidly previewing the volume data, when only few context information about the concerning dataset is available. An important ex...