Sciweavers

JMLR
2010

Descent Methods for Tuning Parameter Refinement

13 years 7 months ago
Descent Methods for Tuning Parameter Refinement
This paper addresses multidimensional tuning parameter selection in the context of "train-validate-test" and K-fold cross validation. A coarse grid search over tuning parameter space is used to initialize a descent method which then jointly optimizes over variables and tuning parameters. We study four regularized regression methods and develop the update equations for the corresponding descent algorithms. Experiments on both simulated and real-world datasets show that the method results in significant tuning parameter refinement.
Alexander Lorbert, Peter J. Ramadge
Added 19 May 2011
Updated 19 May 2011
Type Journal
Year 2010
Where JMLR
Authors Alexander Lorbert, Peter J. Ramadge
Comments (0)