Sciweavers

CIKM
2007
Springer

Detecting distance-based outliers in streams of data

14 years 6 months ago
Detecting distance-based outliers in streams of data
In this work a method for detecting distance-based outliers in data streams is presented. We deal with the sliding window model, where outlier queries are performed in order to detect anomalies in the current window. Two algorithms are presented. The first one exactly answers outlier queries, but has larger space requirements. The second algorithm is directly derived from the exact one, has limited memory requirements and returns an approximate answer based on accurate estimations with a statistical guarantee. Several experiments have been accomplished, confirming the effectiveness of the proposed approach and the high quality of approximate solutions. Categories and Subject Descriptors H.2.8 [Database Management]: Database Applications— Data mining General Terms Algorithms, Performance Keywords Anomaly detection, data streams, distance-based outliers
Fabrizio Angiulli, Fabio Fassetti
Added 07 Jun 2010
Updated 07 Jun 2010
Type Conference
Year 2007
Where CIKM
Authors Fabrizio Angiulli, Fabio Fassetti
Comments (0)