An increasing number of scientific communities rely on Semantic Web ontologies to share and interpret data within and across research domains. These common knowledge representation resources are usually developed and maintained manually and essentially co-evolve along with experimental evidence produced by scientists worldwide. Detecting automatically the differences between (two) versions of the same ontology in order to store or visualize their deltas is a challenging task for e-science. In this paper, we focus on languages allowing the formulation of concise and intuitive deltas, which are expressive enough to describe unambiguously any possible change and that can be effectively and efficiently detected. We propose a specific language that provably exhibits those characteristics and provide a change detection algorithm which is sound and complete with respect to the proposed language. Finally, we provide a promising experimental evaluation of our framework using real ontologies ...