Blogging has been an emerging media for people to express themselves. However, the presence of spam-blogs (also known as splogs) may reduce the value of blogs and blog search engines. Hence, splog detection has recently attracted much attention from research. Most existing works on splog detection identify splogs using their content/link features and target on spam filters protecting blog search engines’ index from spam. In this paper, we propose a splog detection framework by monitoring the on-line search results. The novelty of our splog detection is that our detection capitalizes on the results returned by search engines. The proposed method therefore is particularly useful in detecting those splogs that have successfully slipped through the spam filters that are also actively generating spam-posts. More specifically, our method monitors the top-ranked results of a sequence of temporally-ordered queries and detects splogs based on blogs’ temporal behavior. The temporal behav...