In this paper we present novel algorithms for computing scenes and within-scene structures in films. We begin by mapping insights from film-making rules and experimental results from the psychology of audition into a computational scene model. We define a computable scene to be a chunk of audio-visual data that exhibits long-term consistency with regard to three properties: (a) chromaticity (b) lighting (c) ambient sound. Central to the computational model is the notion of a causal, finite-memory model. We segment the audio and video data separately. In each case we determine the degree of correlation of the most recent data in the memory with the past. The respective scene boundaries are determined using local minima and aligned using a nearest neighbor algorithm. We introduce the idea of a discrete object series to automatically determine the structure within a scene. We then use statistical tests on the series to determine the presence of dialogue. The algorithms were tested on a d...