Given a set of data points as measurements from a developable surface, the present paper investigates the recognition and reconstruction of these objects. We investigate the set of estimated tangent planes of the data points and show that classical Laguerre geometry is a useful tool for recognition, classification and reconstruction of developable surfaces. These surfaces can be generated as envelopes of a one-parameter family of tangent planes. Finally we give examples and discuss the problems especially arising from the interpretation of a surface as set of tangent planes. Key words: developable surface, cylinder of revolution, cone of revolution, reconstruction, recognition, space of planes, Laguerre geometry