To mitigate inter-cell interference (ICI) and achieve higher spectrum efficiency, fractional frequency reuse (FFR) has been widely adopted by the next generation wireless systems, wherein different frequency reuse factors are applied to cell center and cell edge zones. In such conventional FFR, a contiguous radio spectrum is partitioned in a fixed fashion across all cells for edge and cell center zones. This approach evidently lacks the flexibility of inter-cell and/or intra-cell resource allocation adjustment and the capability of dealing with traffic load fluctuation and quality of service (QoS) requirements variations. This paper models the implementation of FFR in a multicell network environment and proposes a scheme called D-FFR that can adaptively partition radio spectrum in a distributed manner to achieve different FFR configuration among different cells. Resource demands and various inter-cell/intracell allocation constraints are accounted in D-FFR to enable differentiab...
Weihuang Fu, Zhifeng Tao, Jinyun Zhang, Dharma P.