We present chaining techniques for signing/verifying multiple packets using a single signing/verification operation. We then present flow signing and verification procedures based upon a tree chaining technique. Since a single signing/verification operation is amortized over many packets, these procedures improve signing and verification rates by one to two orders of magnitude compared to the approach of signing/verifying packets individually. Our procedures do not depend upon reliable delivery of packets, provide delay-bounded signing, and are thus suitable for delay-sensitive flows and multicast applications. To further improve our procedures, we propose several extensions to the Feige-Fiat-Shamir digital signature scheme to speed up both the signing and verification operations, as well as to allow "adjustable and incremental" verification. The extended scheme, called eFFS, is compared to four other digital signature schemes (RSA, DSA, ElGamal, Rabin). We compare their sig...
Chung Kei Wong, Simon S. Lam