This paper describes the direct anonymous attestation scheme (DAA). This scheme was adopted by the Trusted Computing Group as the method for remote authentication of a hardware module, called trusted platform module (TPM), while preserving the privacy of the user of the platform that contains the module. Direct anonymous attestation can be seen as a group signature without the feature that a signature can be opened, i.e., the anonymity is not revocable. Moreover, DAA allows for pseudonyms, i.e., for each signature a user (in agreement with the recipient of the signature) can decide whether or not the signature should be linkable to another signature. DAA furthermore allows for detection of “known” keys: if the DAA secret keys are extracted from a TPM and published, a verifier can detect that a signature was produced using these secret keys. The scheme is provably secure in the random oracle model under the strong RSA and the decisional Diffie-Hellman assumption.
Ernest F. Brickell, Jan Camenisch, Liqun Chen