We show that (n, 2n ) additive codes over GF(4) can be represented as directed graphs. This generalizes earlier results on self-dual additive codes over GF(4), which correspond to undirected graphs. Graph representation reduces the complexity of code classification, and enables us to classify additive (n, 2n ) codes over GF(4) of length up to 7. From this we also derive classifications of isodual and formally self-dual codes. We introduce new constructions of circulant and bordered circulant directed graph codes, and show that these codes will always be isodual. A computer search of all such codes of length up to 26 reveals that these constructions produce many codes of high minimum distance. In particular, we find new near-extremal formally self-dual codes of length 11 and 13, and isodual codes of length 24, 25, and 26 with better minimum distance than the best known self-dual codes.
Lars Eirik Danielsen, Matthew G. Parker