Abstract. We consider the problem of finding communities in large linked networks such as web structures or citation networks. We review similarity measures for linked objects and discuss the k-Means and EM algorithms, based on text similarity, bibliographic coupling, and co-citation strength. We study the utilization of the principle of multi-view learning to combine these similarity measures. We explore the clustering algorithms experimentally using web pages and the CiteSeer repository of research papers and find that multi-view clustering effectively combines link-based and intrinsic similarity.