Sciweavers

MLDM
2007
Springer

Discovering Plausible Explanations of Carcinogenecity in Chemical Compounds

14 years 5 months ago
Discovering Plausible Explanations of Carcinogenecity in Chemical Compounds
Abstract. The goal of predictive toxicology is the automatic construction of carcinogenecity models. Most common artificial intelligence techniques used to construct these models are inductive learning methods. In a previous work we presented an approach that uses lazy learning methods for solving the problem of predicting carcinogenecity. Lazy learning methods solve new problems based on their similarity to already solved problems. Nevertheless, a weakness of these kind of methods is that sometimes the result is not completely understandable by the user. In this paper we propose an explanation scheme for a concrete lazy learning method. This scheme is particularly interesting to justify the predictions about the carcinogenesis of chemical compounds.
Eva Armengol
Added 08 Jun 2010
Updated 08 Jun 2010
Type Conference
Year 2007
Where MLDM
Authors Eva Armengol
Comments (0)