Sciweavers

NCA
2007
IEEE

Discovering Web Workload Characteristics through Cluster Analysis

14 years 5 months ago
Discovering Web Workload Characteristics through Cluster Analysis
In this paper we present clustering analysis of sessionbased Web workloads of eight Web servers using the intrasession characteristics (i.e., number of requests per session, session length in time, and bytes transferred per session) as variables. We use K-means algorithm and the Mahalanobis distance, and analyze the heavy-tailed behavior of intra-session characteristics and their correlations for each cluster. Our results show that clustering provides an efficient way to classify tens or hundreds thousands of sessions into several coherent classes that efficiently describe Web workloads. These classes reveal phenomena that cannot be observed when studying the workload as a whole.
Fengbin Li, Katerina Goseva-Popstojanova, Arun Ros
Added 04 Jun 2010
Updated 04 Jun 2010
Type Conference
Year 2007
Where NCA
Authors Fengbin Li, Katerina Goseva-Popstojanova, Arun Ross
Comments (0)