We propose a discrete regularization framework on weighted graphs of arbitrary topology, which unifies image and mesh filtering. The approach considers the problem as a variational one, which consists in minimizing a weighted sum of two energy terms: a regularization one that uses the discrete p-Laplace operator, and an approximation one. This formulation leads to a family of simple nonlinear filters, parameterized by the degree p of smoothness and by the graph weight function. Some of these filters provide a graph-based version of well-known filters used in image and mesh processing, such as the bilateral filter, the TV digital filter or the nonlocal mean filter.