Sciweavers

ICCV
2007
IEEE

Discriminant Embedding for Local Image Descriptors

15 years 1 months ago
Discriminant Embedding for Local Image Descriptors
Invariant feature descriptors such as SIFT and GLOH have been demonstrated to be very robust for image matching and visual recognition. However, such descriptors are generally parameterised in very high dimensional spaces e.g. 128 dimensions in the case of SIFT. This limits the performance of feature matching techniques in terms of speed and scalability. Furthermore, these descriptors have traditionally been carefully hand crafted by manually tuning many parameters. In this paper, we tackle both of these problems by formulating descriptor design as a nonparametric dimensionality reduction problem. In contrast to previous approaches that use only the global statistics of the inputs, we adopt a discriminative approach. Starting from a large training set of labelled match/non-match pairs, we pursue lower dimensional embeddings that are optimised for their discriminative power. Extensive comparative experiments demonstrate that we can exceed the performance of the current state of the art...
Gang Hua, Matthew Brown, Simon A. J. Winder
Added 14 Oct 2009
Updated 30 Oct 2009
Type Conference
Year 2007
Where ICCV
Authors Gang Hua, Matthew Brown, Simon A. J. Winder
Comments (0)