—This paper presents a fast part-based subspace selection algorithm, termed the binary sparse nonnegative matrix factorization (B-SNMF). Both the training process and the testing process of B-SNMF are much faster than those of binary principal component analysis (B-PCA). Besides, B-SNMF is more robust to occlusions in images. Experimental results on face images demonstrate the effectiveness and the efficiency of the proposed B-SNMF.