Sciweavers

ICML
2006
IEEE

Discriminative unsupervised learning of structured predictors

15 years 7 days ago
Discriminative unsupervised learning of structured predictors
We present a new unsupervised algorithm for training structured predictors that is discriminative, convex, and avoids the use of EM. The idea is to formulate an unsupervised version of structured learning methods, such as maximum margin Markov networks, that can be trained via semidefinite programming. The result is a discriminative training criterion for structured predictors (like hidden Markov models) that remains unsupervised and does not create local minima. To reduce training cost, we reformulate the training procedure to mitigate the dependence on semidefinite programming, and finally propose a heuristic procedure that avoids semidefinite programming entirely. Experimental results show that the convex discriminative procedure can produce better conditional models than conventional Baum-Welch (EM) training.
Linli Xu, Dana F. Wilkinson, Finnegan Southey, Dal
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2006
Where ICML
Authors Linli Xu, Dana F. Wilkinson, Finnegan Southey, Dale Schuurmans
Comments (0)