Let ir(G) and (G) be the irredundance number and the domination number of a graph G, respectively. A graph G is called irredundance perfect if ir(H) = (H), for every induced subgraph H of G. In this paper we disprove the known conjecture of Henning [3, 11] that a graph G is irredundance perfect if and only if ir(H) = (H) for every induced subgraph H of G with ir(H) 4. We also give a summary of known results on irredundance perfect graphs. Moreover, the irredundant set problem and the dominating set problem are shown to be NP-complete on some classes of graphs. A number of problems and conjectures are proposed.
Lutz Volkmann, Vadim E. Zverovich