Abstract. In ad hoc networks, node mobility causes the network topology to change dynamically over time, which complicates important tasks such as routing and flow control. We propose a distributed scheme for accurately and efficiently tracking the mobility of nodes in ad hoc networks. A first-order autoregressive model is used to represent the evolution of the mobility state of each node, which consists of position, velocity, and acceleration. Each node uses an extended Kalman filter to estimate its mobility state by incorporating network-based signal measurements and the position estimates of the neighbor nodes. Neighbor nodes exchange their position estimates periodically by means of HELLO packets. Each node re-estimates its mobility model parameters, allowing the scheme to adapt to changing mobility characteristics. In practice, a small number of reference nodes with known coordinates is required for accurate mobility tracking. Simulation results validate the accuracy of the pro...
Zainab R. Zaidi, Brian L. Mark