Sciweavers

NIPS
2007

The Distribution Family of Similarity Distances

14 years 28 days ago
The Distribution Family of Similarity Distances
Assessing similarity between features is a key step in object recognition and scene categorization tasks. We argue that knowledge on the distribution of distances generated by similarity functions is crucial in deciding whether features are similar or not. Intuitively one would expect that similarities between features could arise from any distribution. In this paper, we will derive the contrary, and report the theoretical result that Lp-norms –a class of commonly applied distance metrics– from one feature vector to other vectors are Weibull-distributed if the feature values are correlated and non-identically distributed. Besides these assumptions being realistic for images, we experimentally show them to hold for various popular feature extraction algorithms, for a diverse range of images. This fundamental insight opens new directions in the assessment of feature similarity, with projected improvements in object and scene recognition algorithms.
Gertjan J. Burghouts, Arnold W. M. Smeulders, Jan-
Added 30 Oct 2010
Updated 30 Oct 2010
Type Conference
Year 2007
Where NIPS
Authors Gertjan J. Burghouts, Arnold W. M. Smeulders, Jan-Mark Geusebroek
Comments (0)