Document clustering is useful in many information retrieval tasks: document browsing, organization and viewing of retrieval results, generation of Yahoo-like hierarchies of documents, etc. The general goal of clustering is to group data elements such that the intra-group similarities are high and the inter-group similarities are low. We present a clustering algorithm called CBC (Clustering By Committee) that is shown to produce higher quality clusters in document clustering tasks as compared to several well known clustering algorithms. It initially discovers a set of tight clusters (high intra-group similarity), called committees, that are well scattered in the similarity space (low inter-group similarity). The union of the committees is but a subset of all elements. The algorithm proceeds by assigning elements to their most similar committee. Evaluating cluster quality has always been a difficult task. We present a new evaluation methodology that is based on the editing distance betw...