Most modern Chip Multiprocessors (CMP) feature shared cache on chip. For multithreaded applications, the sharing reduces communication latency among co-running threads, but also results in cache contention. A number of studies have examined the influence of cache sharing on multithreaded applications, but most of them have concentrated on the design or management of shared cache, rather than a systematic measurement of the influence. Consequently, prior measurements have been constrained by the reliance on simulators, the use of out-of-date benchmarks, and the limited coverage of deciding factors. The influence of CMP cache sharing on contemporary multithreaded applications remains preliminarily understood. In this work, we conduct a systematic measurement of the influence on two kinds of commodity CMP machines, using a recently released CMP benchmark suite, PARSEC, with a number of potentially important factors on program, OS, and architecture levels considered. The measurement shows...
Eddy Z. Zhang, Xipeng Shen, Yunlian Jiang