We present a generic transformation that allows us to use a large class of pairing-based signatures to construct schemes for signing group elements in a structure preserving way. As a result of our transformation we obtain a new efficient signature scheme for signing a vector of group elements that is based only on the well established decisional linear assumption (DLIN). Moreover, the public keys and signatures of our scheme consist of group elements only, and a signature is verified by evaluating a set of pairing-product equations. In combination with the Groth-Sahai proof system, such a signature scheme is an ideal building block for many privacy-enhancing protocols. To do this, we start by proposing a new stateful signature scheme for signing vectors of exponents that is F-unforgeable under weak chosen message attacks. This signature scheme is of independent interest as it is compatible with Groth-Sahai proofs and secure under a computational assumption implied by DLIN. Then we gi...