Buildings are known to be the largest consumers of electricity in the United States, and often times the dominant energy consumer is the HVAC system. Despite this fact, in most buildings the HVAC system is run using primitive static control algorithms based on fixed work schedules causing wasted energy during periods of low occupancy. In this paper we present a novel control architecture that uses occupancy sensing to guide the operation of a building HVAC system. We show how we can enable aggressive duty-cycling of building HVAC systems – that is, turn them ON or OFF – to save energy while meeting building performance requirements using inexpensive sensing and control methods. We have deployed our occupancy sensor network across an entire floor of a university building and our data shows several periods of low occupancy with significant opportunities to save energy over normal HVAC schedules. Furthermore, by interfacing with the building Energy Management System (EMS) directly...