This paper addresses the problem of tracking human body pose in monocular video including automatic pose initialization and re-initialization after tracking failures caused by partial occlusion or unreliable observations. We proposed a method based on data-driven Markov chain Monte Carlo (DD-MCMC) that uses bottom-up techniques to generate state proposals for pose estimation and initialization. This method allows us to exploit different image cues and consolidate the inferences using a representation known as the proposal maps. We present experimental results with an indoor video sequence.