This work describes a forward-looking approach for the solution of dynamic (time-changing) problems using evolutionary algorithms. The main idea of the proposed method is to combine a forecasting technique with an evolutionary algorithm. The location, in variable space, of the optimal solution (or of the Pareto optimal set in multi-objective problems) is estimated using a forecasting method. Then, using this forecast, an anticipatory group of individuals is placed on and near the estimated location of the next optimum. This prediction set is used to seed the population when a change in the objective landscape arrives, aiming at a faster convergence to the new global optimum. The forecasting model is created using the sequence of prior optimum locations, from which an estimate for the next location is extrapolated. Conceptually this approach encompasses advantages of memory methods by making use of information available from previous time steps. Combined with a convergence/diversity ba...