Biometric fusion consolidates the output of multiple biometric classifiers to render a decision about the identity of an individual. We consider the problem of designing a fusion scheme when 1) the number of training samples is limited, thereby affecting the use of a purely density-based scheme and the likelihood ratio test statistic; 2) the output of multiple matchers yields conflicting results; and 3) the use of a single fusion rule may not be practical due to the diversity of scenarios encountered in the probe dataset. To address these issues, a dynamic reconciliation scheme for fusion rule selection is proposed. In this regard, the contribution of this paper is two-fold: 1) the design of a sequential fusion technique that uses the likelihood ratio test-statistic in conjunction with a support vector machine classifier to account for errors in the former; and 2) the design of a dynamic selection algorithm that unifies the constituent classifiers and fusion schemes in order to optimiz...