The randomness of iris pattern makes it one of the most reliable biometric traits. On the other hand, the complex iris image structure and the various sources of intra-class variations result in the difficulty of iris representation. Although, a number of iris recognition methods have been proposed, it has been found that several accurate iris recognition algorithms use multiscale techniques, which provide a well-suited representation for iris recognition. In this paper and after a thorough analysis and summarization, a multiscale edge detection approach has been employed as a pre-processing step to efficiently localize the iris followed by a new feature extraction technique which is based on a combination of some multiscale feature extraction techniques. This combination uses special Gabor filters and wavelet maxima components. Finally, a promising feature vector representation using moment invariants is proposed. This has resulted in a compact and efficient feature vector. In additi...