Sciweavers

SUTC
2008
IEEE

Effective Feature Space Reduction with Imbalanced Data for Semantic Concept Detection

14 years 5 months ago
Effective Feature Space Reduction with Imbalanced Data for Semantic Concept Detection
Semantic understanding of multimedia content has become a very popular research topic in recent years. Semantic concept detection algorithms face many challenges such as the semantic gap and imbalance data, among others. In this paper, we propose a novel algorithm using multiple correspondence analysis (MCA) to discover the correlation between features and classes to reduce the feature space and to bridge the semantic gap. Moreover, the proposed algorithm is able to explore the correlation between items (i.e., feature-value pairs generated for each of the features) and classes which expands its ability to handle imbalance data sets. To evaluate the proposed algorithm, we compare its performance on semantic concept detection with several existing feature selection methods under various well-known classifiers using some of the concepts and benchmark data available from the TRECVID project. The results demonstrate that our proposed algorithm achieves promising performance, and it perfor...
Lin Lin, Guy Ravitz, Mei-Ling Shyu, Shu-Ching Chen
Added 01 Jun 2010
Updated 01 Jun 2010
Type Conference
Year 2008
Where SUTC
Authors Lin Lin, Guy Ravitz, Mei-Ling Shyu, Shu-Ching Chen
Comments (0)