Even though multilingual communities that use machine translation to overcome language barriers are increasing, we still lack a complete understanding of how machine translation affects communication. In this study, eight pairs from three different language communities–China, Korea, and Japan–worked on referential tasks in their shared second language (English) and in their native languages using a machine translation embedded chat system. Drawing upon prior research, we predicted differences in conversational efficiency and content, and in the shortening of referring expressions over trials. Quantitative results combined with interview data show that lexical entrainment was disrupted in machine translation-mediated communication because echoing is disrupted by asymmetries in machine translations. In addition, the process of shortening referring expressions is also disrupted because the translations do not translate the same terms consistently throughout the conversation. To suppo...