Sciweavers

SAC
2008
ACM

Efficient concept clustering for ontology learning using an event life cycle on the web

13 years 11 months ago
Efficient concept clustering for ontology learning using an event life cycle on the web
Ontology learning integrates many complementary techniques, including machine learning, natural language processing, and data mining. Specifically, clustering techniques facilitate the building of interrelationships between terms by exploiting similarities of concepts. With the rapid growth of the Web, online information has become one of the major information sources. The ontology learning process where traditional clustering algorithms are involved tends to be slow and computationally expensive when the dataset is as large as the Web. To address this problem, we present an efficient concept clustering technique for ontology learning that reduces the number of required pairwise term similarity computations without a loss of quality. Our approach is to identify relevant terms using a computationally inexpensive similarity metric based on an event life cycle in online news articles. Then, we perform more sophisticated similarity computations. Hence, we can build clusters with high prec...
Sangsoo Sung, Seokkyung Chung, Dennis McLeod
Added 28 Dec 2010
Updated 28 Dec 2010
Type Journal
Year 2008
Where SAC
Authors Sangsoo Sung, Seokkyung Chung, Dennis McLeod
Comments (0)