Temporal planning (TP) is notoriously difficult because it requires to solve a propositional STRIPS planning problem with temporal constraints. In this paper, we propose an efficient strategy for solving TP, which combines, in an innovative way, several well established and studied techniques in AI, OR and constraint programming. Our approach integrates graph planning (a well studied planning paradigm), max-SAT (a constraint optimization technique), and the Program Evaluation and Review Technique (PERT), a well established technique in OR. Our method first separates the logical and temporal constraints of a TP problem and solves it in two phases. In the first phase, we apply our new STRIPS planner to generate a parallel STRIPS plan with a minimum number of parallel steps. Our new STRIPS planner is based on a new max-SAT formulation, which leads to an effective incremental learning scheme and a goal-oriented variable selection heuristic. The new STRIPS planner can generate optimal paral...