We consider in-network processing via local message passing. The considered setting involves a set of sensors each of which can communicate with a subset of other sensors. There is no designated fusion center; instead sensors exchange messages on the associated communication graph to obtain a global estimate. We propose an asynchronous distributed algorithm based on local fusion between neighboring sensors. The algorithm differs from other related schemes such as gossip algorithms in that after each local fusion one of the associated sensors ceases its activity until it is re-activated by reception of messages from a neighboring sensor. This leads to substantial gains in energy expenditure over existing local ad-hoc messaging algorithms such as gossip and belief propagation algorithms. Our results are general and we focus on some explicit graphs, namely geometric random graphs, which have been successfully used to model wireless networks, and d-dimensional lattice torus with n nodes, w...