With the increasing occurrence of temporal and spatial data in present-day database applications, the interval data type is adopted by more and more database systems. For an efficient support of queries that contain selections on interval attributes as well as simple-valued attributes (e. g. numbers, strings) at the same time, special index structures are required supporting both types of predicates in combination. Based on the Relational Interval Tree, we present various indexing schemes that support such combined queries and can be integrated in relational database systems with minimum effort. Experiments on different query types show superior performance for the new techniques in comparison to competing access methods.